A New and Efficient Synthetic Method and Antibacterial Activities of Oxazolidinone Analogues

De Sheng YU, Liang HUANG, Hui LIANG, Ping GONG*

Shenyang Pharmaceutical University, Shenyang 110016

Abstract: A series of novel oxazolidinone analogues were prepared by a new and efficient synthetic method and their antibacterial activities were determined. These compounds were characterized by LC-MS and ¹H NMR.

Keywords: Oxazolidinones, antibacterial activity, synthesis.

Oxazolidinones, exemplified by Linezolid, are a novel class of totally synthetic antibacterial agents with activity against multi-drug-resistant gram-positive bacteria, such as *methicillin-resistant Staphylococcus aureus* (MRSA), *methicillin-resistant Staphylococcus epidermidis* (MRSE) and *vancomycin-resistant enterococci* (VRE)¹. Recently, some 4-substituted piperazinyl phenyl oxazolidinone analogues which had wider antibacterial spectrum and stronger activity than Linezolid were reported ². So our interest turned to the 4-substituted piperazinyl phenyl oxazolidinone analogues and their activities. In this paper, a series of novel oxazolidinone analogues were prepared by a new and efficient synthetic method, and their antibacterial activities were evaluated.

Chemistry

The general synthetic method of 4-substituted piperazinyl phenyl oxazolidinone analogues has been reported by Brickner *et al.*³, but in which the sensitive reagents and extreme conditions were needed. We designed a new synthetic method and solved this problem successfully. The method was outlined in the **Scheme 1** and **Scheme 2**.

In the Brickner's method, phenyl oxazolidinone was synthesized by using BuLi at -78°C under nitrogen atmosphere. In our paper, by starting with (R)-*epi*-chlorohydrin as the chiral source, which was commecially available and cheap. Starting from 3-fluorophenyl isocyanate **1**, which could be transformed into phenyl oxazolidinone **2** in one step in the presence of lithium bromide and tributylphosphine oxide. The reaction mixture was refluxed in toluene for two hours to give 83% yield. Then displacement chlorine with NaN₃ to give **3** by the catalysis of sodium iodide in DMF at 80°C in 95% yield. Reacting **3** with thioacetic acid gave **4** in 90% yield, which was higher than

^{*} E-mail: gongping37@sina.com

De Sheng YU et al.

reported⁴(61%). **5** was obtained according to the literatured 5. Finally, the bromide **5** with morpholine or **9a-j** in DMF at 80°C gave linezolid or corresponding **6a-j** in 70%-80% yield by using CuI and L-proline as the ligand⁶.

The compounds **8a-j** were prepared by reacting **7a-j** with various substituted compound in the present of Na₂CO₃ in 0-45 °C in 82-90% yield, then **8a-j** were heated with excess piperazine and K₂CO₃ in CH₃CN in 85-95% yield to afford the compound **9a-j**.

In conclusion, we have synthesized ten new target compounds with a new synthetic method, and their structures, LC-MS and ¹H NMR data were listed in **Table 1**.

Antibacterial Activity

The antibacterial activities *in vitro* of the target compounds against *Straphylococcus aureus* (MA) were tested with Linezolid as a contrast. The results were shown in **Table 2**.

reagents and conditions: a. (R)-*epi*-chlorohydrin, LiBr, (*n*-Bu)₃PO, toluene, reflux, 83%; b. NaN₃, NaI, DMF, 80°C, 95%; c. CH₃COSH, r.t, 90%; d. NaBO₃, Na₂WO₄, KBr, 75°C, 86%; e. **9a-j** or morpholine, CuI, K₂CO₃, L-proline, DMF, 80°C, 70%-80%.

Scheme 2

reagents and conditions: f. Na₂CO₃, 0-45 $^{\circ}$ C, R₃H, acetone, 82%-90%; g. piperazine, K₂CO₃, CH₃CN, 45-80 $^{\circ}$ C, 85%-95%;

Compd	R_1	R_2	R ₃	LC-MS (m/z)	¹ H NMR(δ ppm)*
6a	СН	H-	CH ₃ O-	445 (M+1)	1.83(s, 3H), 3.02(s, 4H), 3.43(m, 2H), 3.73(dd, 1H, $J=9$ Hz, $J=6$ Hz), 3.83(s, 4H), 3.90(s, 3H), 4.12(t, 1H, $J=9$ Hz), 4.72 (m, 1H), 7.06-7.19 (m, 3H), 7.50(d, 1H), 8.28(dd, 2H)
6b	СН	H-	Cl-	449 (M+1)	1.83(s, 3H), 3.03(s, 4H), 3.41(m, 2H), 3.74(dd, 1H, $J=9$ Hz, $J=6$ Hz), 3.82(s, 4H), 4.12(t, 1H, $J=9$ Hz), 4.72(m, 1H), 7.06-7.20(m, 3H), 7.50(d, 1H), 8.28(t, 1H), 8.37(s, 1H, $J=9$ Hz)
6с	N	CH ₃ O-	CH ₃ O-	476 (M+1)	1.83(s, 3H), 3.02(s, 4H), 3.43(m, 2H), 3.73(dd, 1H, J=9Hz, J =6 Hz), 3.86(s, 6H), 3.92(s, 4H), 4.12(t, 1H, J=9 Hz), 4.72(m, 1H), 7.06-7.20(m, 2H), 7.50(d, 1H), 8.28(t, 1H, J=9 Hz)
6d	N	C ₂ H ₅ O-	C ₂ H ₅ O-	504 (M+1)	1.40(s, 6H), 1.83(s, 3H), 3.02(s, 4H), 3.43(m, 2H), 3.74(dd, 1H, $J=9Hz$, $J=6Hz$), 3.94(m, 10H), 4.12(t, 1H, $J=9Hz$), 4.72(m, 1H), 7.06- 7.20(m, 2H), 7.50(d, 1H), 8.28(t, 1H, $J=9Hz$)
6e	N	CH ₃ O-	,С2H5 —N. С2H5	517 (M+1)	1.10(t, 6H), 1.83(s, 3H), 2.99(s, 4H), 3.41(m, 2H), 3.52(dd, 4H), 3.70(m, 1H), 3.78(s, 3H), 3.85(s, 4H),4.08(t, 1H, <i>J</i> =9 Hz), 4.72(m, 1H), 7.07-7.19(m, 2H), 7.50(d, 1H), 8.24(t, 1H, <i>J</i> =9 Hz) Hz)
6f	N	CH ₃ O-	-N_O	531 (M+1)	1.83(s, 3H), 2.99(s, 4H), 3.41(m, 2H), 3.61(d, 4H), 3.69(m, 5H), 3.79(s, 3H), 3.86(s, 4H), 4.12(t, 1H, <i>J</i> =9 Hz), 4.72 (m, 1H), 7.06-7.20(m, 2H), 7.50(d, 1H), 8.24(t, 1H, <i>J</i> =9 Hz)
6g	N	CH ₃ O-	H N i-Pr	503 (M+1)	1.36(d, 6H), 1.83(s, 3H), 2.99(s, 4H), 3.41(m, 2H), 3.70(m, 2H), 3.76(s, 3H), 3.84(s, 4H), 4.11(t, 1H, <i>J</i> =9 Hz), 4.72(m, 1H), 6.90(d, 1H), 7.06-7.20(m, 2H), 7.50(t, 2H), 8.25(t, 1H, <i>J</i> =9 Hz)
6h	N	CH₃O-	-N i-Pr	517 (M+1)	1.11(d, 6H), 1.83(s, 3H), 2.90(s, 3H), 2.99(s, 4H), 3.41(m, 2H), 3.70(m, 1H, $J=9Hz$, $J=6$ Hz), 3.73(s, 3H), 3.86(s, 4H), 4.10(t, 1H, $J=9$ Hz), 4.72(m, 1H), 4.93(m, 1H), 7.06-7.20(m, 2H), 7.50(d, 1H), 8.24(t, 1H, $J=9$ Hz)
6i	N	CH ₃ O-	-N	515 (M+1)	1.83-1.90(m, 7H), 2.98(s, 4H), 3.38-3.46(m, 6H), 3.70(m, 1H, <i>J</i> =9Hz, <i>J</i> =6 Hz), 3.78(s, 3H), 3.86(s, 4H), 4.10(t, 1H, <i>J</i> =9 Hz), 4.72(m, 1H), 7.06-7.19(m, 2H), 7.50(d, 1H), 8.25(t, 1H, <i>J</i> =9 Hz)
6j	N	CH ₃ O-	-H N	501 (M+1)	0.46(s, 2H), 0.63(d, 2H), 1.83(s, 3H), 2.76(s, 1H), 2.98(s, 4H), 3.41(m, 2H), 3.68(m, 2H), 3.75(s, 3H), 3.83(s, 4H), 4.10(t, 1H, <i>J</i> =9 Hz), 4.70(m, 1H), 7.06-7.20(m, 2H), 7.50 (t, 2H), 8.24(t, 1H, <i>J</i> =9 Hz)

 Table 1
 The structures, FAB-MS and ¹H NMR data of compound 6a-j

*DMSO- d_6 as solvent

Compound **6a-c** showed good fungicidal activity, antibacterial activity of **6b** was even higher than linezolid. The further experiments and pharmacological evaluations are in progress. These results encourage us to design and synthesize more antibacterial agents.

De Sheng YU et al.

Compd.	Straphylococcus aureus MIC(µg/mL)	Compd.	Straphylococcus aureus MIC(µg/mL)
Linezolid	2.5		
6a	2.5	6f	10
6b	1.25	6g	20
6c	2.5	6h	20
6d	40	6i	5
6e	10	6j	10

 Table 2
 The antibacterial activities of compounds 6a-j

References

S. Natesan., S. Deekonda., K. Manoj K., *et al.*, *J. Med. Chem.*, **2002**, *45*, 3953.
 R. Ashok, *Drugs of the future*, **2003**, 28(11), 1070.

3. J. Steven B., K. H Douglas, R. B. Michael, J. Med. Chem., 1996, 39, 673.

T Rosen, Lico IM, *et al.*, *J. Org. Chem.*, **1988**, *53*, 1580.
 R. James. Hanson, Simone Harpel, *et al.*, *J. Chem. Res* (S), **1997**, 432.

6. D.W. Ma et al., Org. Lett., 2003, 5(14), 2453.

Received 16 Augest, 2004